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Abstract 26 

Adaptations can be thought of as evolutionary technologies which allow an organism to 27 

exploit environments. Among convergent taxa, adaptations may be largely equivalent with the 28 

taxa operating in a similar set of environmental conditions, divergent with the taxa operating in 29 

different sets of environmental conditions, or superior with one taxon operating within an 30 

extended range of environmental conditions than the other. With this framework in mind, we 31 

sought to characterize the adaptations of two convergent nectarivorous bird families, the New 32 

World hummingbirds (Trochilidae) and Old World sunbirds (Nectariniidae), by comparing their 33 

biogeography. Looking at their elevational and latitudinal gradients, hummingbirds not only 34 

extend into but also maintain species richness in more extreme environments. We suspect that 35 

hummingbirds have a superior key adaptation that sunbirds lack, namely a musculoskeletal 36 

architecture that allows for hovering. Through biogeographic comparisons, we have been able to 37 

assess and understand adaptations as evolutionary technologies among two convergent bird 38 

families, a process that should work for most taxa.  39 
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Introduction  43 

Convergent evolution provides startling examples of how natural selection shapes the 44 

traits of species to optimize fitness (1). Species’ morphologies, physiologies, and behaviors 45 

become fine-tuned to their shared ecologies somewhat irrespective of evolutionary history (2). 46 

Besides the species level, convergence can happen between higher taxa (e.g., families and 47 

orders). One striking example is the convergence between the New World nectarivorous 48 

hummingbirds (order Apodiformes, family Trochilidae) and the Old World passerine nectarivores 49 

including the Hawaiian honeycreepers (order Passeriformes, family Fringillidae), Australian 50 

honeyeaters (order Passeriformes, family Meliphagidae) and the Asian and African sunbirds 51 

(order Passeriformes, family Nectariniidae). Some or all members of these families show 52 

convergent adaptations for nectarivory, particularly elongated bills and extensile tongues. Their 53 

remarkable convergence, especially between hummingbirds and sunbirds, makes them ripe for 54 

analysis of adaptations as evolutionary technologies. 55 

Adaptations can be thought of as evolutionary technologies that allow an organism to 56 

operate within an environment. Among evolutionary convergent taxa, adaptations might be 57 

equivalent leading to similar fitness in similar environmental conditions, e.g. the convergent 58 

snake constrictor families Boidae and Pythonidae (Fig. 1a) (3). In this case, both clades operate 59 

under similar fundamental niches. Differences in adaptations, though, can change the 60 

fundamental niches of the convergent clades and open new ecological opportunities (4). Such 61 

adaptations are known as as key adaptations. Key adaptations may be divergent evolutionary 62 

technologies with the taxa occupying different fundamental niches, e.g. the ankle bones of the 63 

grandorder Euarchonta (four orders of mammals including primates) that promote arboreal living 64 

(Fig. 1b). Hummingbirds and hawkmoths (order Lepidoptera, family Sphingidae) are instructive 65 
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examples of convergent families displaying divergent evolutionary technologies. As vertebrates 66 

and invertebrates respectively, they strongly differ in virtually all aspects of ontogeny, 67 

morphology, and physiology. Yet, their coexistence in the New World suggests that one set of 68 

evolutionary technologies is not superior to the other under all circumstances leading to a 69 

partitioning of environmental conditions (5). 70 

Key adaptations may also be superior evolutionary technologies allowing a taxon to 71 

expand beyond its original range of environments and have a greater fundamental niche (Fig. 72 

1c). Examples of superior key adaptations include the retractable necks among turtles of the 73 

suborder Cryptodira, which protect them from predation, and the infrared-sensing pits among 74 

vipers of the subfamily Crotalinae, which allows them to “see” mammals at night. When a key 75 

adaptation creates a superior evolutionary technology, we might see the replacement of another 76 

clade – typically but not always the ancestral clade – by the new one (6; 7; 8). Or the ancestral 77 

clade may persist where the derived clade has yet to colonize as is the case with the Pleurodira 78 

turtles of the Southern hemisphere. Since hummingbirds and sunbirds do not occur sympatrically 79 

and therefore do not interact, it is hard to discern whether they represent equivalent, divergent, or 80 

superior evolutionary technologies. We hypothesize that hummingbirds represent the latter 81 

compared to sunbirds and other nectarivorous passerines with hummingbirds possessing a 82 

superior key adaptation making them an example of “progressive evolution” (9; 6). 83 

Hummingbirds display a stronger mutualistic co-adaptation with flowers compared to 84 

sunbirds (10; 11). All hummingbirds feed almost exclusively on nectar, only supplementing 85 

protein intake by eating small insects (12). As such, they have evolved distinct anatomical and 86 

morphological features suited to nectar foraging. In addition to an elongated bill and extensile 87 

tongue, the hummingbird’s tongue acts as a micro-pump for reaching and gathering nectar (13; 88 
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14). They possess large breast muscles (30% of body weight), skeletal architecture common to 89 

Apodiformes, and dense erythrocyte counts for delivering a steady supply of oxygen to feed 90 

extremely active muscles (10). Specialized wings allow hummingbirds to hover and fly 91 

backwards. Sunbirds, on the other hand, are not as tightly adapted to nectar feeding with many 92 

species supplementing their diet with insects, seeds, fruit, and flower heads, and others being 93 

largely insectivorous (15). They also show large variation in bill and flight morphology with the 94 

flowerpeckers and the Hedydipna and Hypogramma sunbirds having broad, flat tongues. In 95 

addition, all sunbirds lack the musculoskeletal architecture to hover and must perch to feed (11). 96 

These anatomical differences along with differences in species richness (364 hummingbird 97 

species vs. 147 sunbird species) suggest that hummingbirds have a superior key adaptation not 98 

found in sunbirds (16). Furthermore, the geographic isolation between the taxa allowed for 99 

independent diversification, making them ideal convergent clades to assess adaptations. 100 

 Testing for a key adaptation requires two things: elucidating a mechanistic hypothesis for 101 

its ecological and functional role and a comparison between clades (7). When comparing clades, 102 

species richness and diversification rates have typically been used (4). Besides these properties, 103 

we also surmise that a greater geographical range would be seen with a superior key adaptation. 104 

By increasing net fitness overall, a superior key adaptation should increase the fitness of a clade 105 

at the margins of its range (17); therefore, clades with a superior key adaptation will be better 106 

able to handle abiotic stress and live under harsher climatic regimes. Looking at the convergent 107 

mice genera Peromyscus and Apodemus, Peromyscus inhabits colder, more arid, and higher 108 

habitats compared to Apodemus due to its more efficient and widely used torpor state (18; 19; 109 

20). Between species richness and biogeography, comparing the latter may be more useful to 110 

assess adaptations as evolutionary technologies since biogeographical extent explicitly depends 111 
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upon a clades’ overall net fitness and directly tests its ecological role.  112 

To characterize the adaptations of hummingbirds and sunbirds, we compared their 113 

biogeography by analyzing each family’s latitudinal and elevational distribution. We demonstrate 114 

that hummingbirds as a clade inhabit more extreme latitudes and maintain their species richness 115 

at higher elevations. We hypothesize these differences in biogeography reveal a superior key 116 

adaptation present in hummingbirds but absent in sunbirds. We speculate that the key adaptation 117 

may be either the unique tongue of the hummingbirds or the unique wing architecture that allows 118 

for hovering. We further speculate on the role adaptations as evolutionary technologies play in 119 

influencing an organism’s ability to exploit the environment.  120 

Materials and Methods 121 

 To assess the adaptations of hummingbirds and sunbirds, we gathered each family’s 122 

latitudinal and elevational gradient of species richness. These gradients are robust geographic 123 

patterns that generally show species richness declining towards higher altitudes and more 124 

extreme latitudes (21; 22; 23; 24; 25; 26; 27). Numerous environmental properties change along 125 

both gradients. Aridity declines significantly around 30 to 40 degrees latitude; a thinner 126 

atmosphere and more variable daily temperatures occur with increased elevation; and more 127 

variable seasonal temperatures, less productivity, and colder temperatures occur with both. Taxa 128 

with superior evolutionary technologies should be better able to deal with these challenges (28).  129 

To compare the biogeography of hummingbirds and sunbirds, we gathered the latitudinal 130 

and elevational range of all species from each family. Elevational ranges came from a global bird 131 

ecology database covering all the bird species of the world (29) while latitudinal ranges of the 132 

families were taken from shapefiles downloaded from BirdLife International and NatureServe 133 

with data extracted using R packages “sp”, “raster”, “rasterVis”, “maptools”, and “rgeos” (30). 134 
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All latitudinal extremes located in the Southern hemisphere were converted to negative values, 135 

and latitudinal maxima and minima were rounded up and down to the nearest integer 136 

respectively. For example, the hummingbird species Amazilia amabilis which ranges from 137 

14.17N to 3.98S would have its range taken as 15 to -4. An additional measure of distance from 138 

the equator, hereafter referred to as “polewardness”, was created. If a species’ range crossed the 139 

equator, then the poleward range was taken to be from 0 to the maximum distance from the 140 

equator. For A. amabilis, its poleward range would be 0 to 15 degrees. The poleward range of an 141 

only Northern or Southern hemispheric species would simply be the absolute value of its 142 

latitudinal range. 143 

 With ranges in hand, we compared the families in two ways. First, we compared several 144 

empirical cumulative distribution functions (ECDFs) based upon the three geographical 145 

properties (elevation, latitude, and polewardness) for each family. Each ECDF started from sea 146 

level, the South Pole, and the equator and traced to higher altitudes, northward, and more 147 

extreme poles. For each geographical property, three ECDFs were created with a species’ 148 

presence based on the minimum, the midpoint, and the maximum of its range. Since species 149 

which cross the equator are not necessarily symmetric about it, the midpoint of a species 150 

poleward range may not accurately reflect its bias towards the equator or poles. Therefore, we 151 

created another measurement of species presence for polewardness, its expected value (see SI). 152 

This led to ten different ECDFs for each family: minimum, maximum, and midpoint for 153 

elevation, latitude, and polewardness and the additional measure of expected polewardness. Each 154 

type of ECDF was then compared between families using the Kolmogorov-Smirnov and 155 

Anderson-Darling minimum difference estimation (MDE) tests with the assumption that the 156 

hummingbird ECDF is less than the sunbird ECDF (one-tailed tests). 157 
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The ECDF analysis tells us whether the distributions differ, not necessarily how they 158 

differ. Therefore, we additionally sought to characterize each family’s distribution by measuring 159 

changes in species richness with polewardness and elevation. To do so, we first counted the 160 

number of species in poleward and elevation intervals of 5 degrees and 500 meters for each 161 

family. If the edge of a species’ range was at the cutoff point of the interval, it would be 162 

considered present in the lower interval but not in the upper interval due to previous rounding. In 163 

the example with A. amabilis, this would mean that the species is counted in the 10 to 15 degree 164 

interval but not the 15 to 20 degree interval. The frequency data were then normalized such that 165 

the interval with the highest number of species became 1 to remove any effect of total species 166 

richness. This gave us four sets of data based on a 2x2 factorial: sunbird and hummingbird 167 

polewardness and elevation. A logistic curve (eq. 1) was then fitted onto each of the four sets of 168 

data – the normalized species richness, ��, per interval vs. the midpoint of each interval – with 169 

variables � and � determining position and steepness of the curve respectively. 170 

 �� �
1

1 � ����
 (1) 

 We then found the inflection point and the two points of the maximum magnitude of 171 

curvature (MMC points) for each curve. Inflection points indicate how well each family 172 

maintains species richness while MMC points give us the start and end of the decline in species 173 

richness. The functions and their key points characterize the shape of each family’s gradient. 174 

Results 175 

 Broadly, our results show that hummingbirds extend farther poleward and higher in 176 

elevation than do sunbirds. Hummingbirds extend from 62 degrees north to 56 degrees south and 177 

up to 5000 m in elevation (SI Table 1,2; Fig. 2,3). Sunbirds, on the other hand, extend only from 178 

36 degrees north to 40 degrees south and up to 4880 m in elevation (SI Table 1,2; Fig. 2,3). Both 179 
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families show the same general pattern of an initial increase in species richness followed by a 180 

decline moving poleward and to higher altitudes (Fig. 4a, b). In addition, hummingbirds maintain 181 

their species richness at higher elevations and more extreme latitudes than sunbirds. ECDF 182 

results confirm this difference in biogeography between hummingbirds and sunbirds with 183 

elevation constituting the greatest difference (SI Table 3, SI Fig. 1). 184 

Both hummingbirds and sunbirds reach approximately the same maximum elevation, 185 

around 5000m (SI Table 1, SI Fig. 1a). Even though both hummingbirds and sunbirds extend to 186 

roughly the same elevation, hummingbirds have a higher normalized species richness at higher 187 

elevations compared to sunbirds. The inflection point for sunbirds occurs at 2087m and 188 

hummingbirds at 2533m (SI Table 4, Fig. 4c). Sunbirds and hummingbird species richness 189 

values both start to decline around the same elevation –1764 and 1898m respectively – but 190 

sunbirds plateau at a lower elevation compared to hummingbirds –2410m vs. 3458m respectively 191 

– indicating a more gradual decline in the normalized species richness of hummingbirds (SI 192 

Table 4, Fig. 4c). 193 

Regarding latitude, hummingbirds occur farther from the equator than do sunbirds, 60-65 194 

degrees vs. 35-40 degrees respectively (SI Table 2, SI Fig. 1b). Also, hummingbird normalized 195 

species richness is at its greatest divergence from sunbird normalized species richness at mid-196 

latitudinal ranges. The hummingbirds’ inflection point is 22.14 degrees latitude versus 18.92 197 

degrees for sunbirds (SI Table 4, Fig. 4d). Hummingbirds also begin their declines further from 198 

the equator than do sunbirds –14.99 and 9.44 degrees respectively. Both plateau around the same 199 

latitude – 29.29 vs. 28.39 degrees respectively (SI Table 4, Fig. 4d). 200 

Discussion 201 

 Sunbirds and hummingbirds are two convergent nectarivorous bird families with different 202 
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evolutionary technologies. While hummingbirds are extremely specialized to nectar feeding, 203 

sunbirds vary, ranging from the highly specialized sugarbirds to the passerine-like flowerpeckers 204 

(10; 11). These differences in evolutionary technologies should reflect differences in the families’ 205 

distribution and biogeography. As one moves higher in elevation and towards the poles, 206 

hummingbirds maintain their species richness more than sunbirds. Though extending to roughly 207 

the same elevational maximum, normalized hummingbird species richness declines at a much 208 

slower rate than sunbirds. The same is true for latitude; in addition, hummingbirds extend into 209 

more extreme latitudes (farther north and south) than sunbirds. Clear from our results is that 210 

hummingbirds have a greater biogeographical extent than sunbirds, likely reflecting a superior 211 

key adaptation. 212 

 One potential hypothesis for the biogeographical differences of hummingbirds and 213 

sunbirds could be dispersal limitation. Firstly, there is a lack of suitable land below 40º S 214 

Secondly, Old World mountain ranges may form a barrier to sunbird dispersal as they primarily 215 

run along the east-west axis in contrast to New World mountain ranges which primarily run 216 

along a north-south axis. We reject this hypothesis on the grounds that hummingbirds are 217 

frequently found in montane habitats. Not only do hummingbirds maintain species richness at 218 

higher elevations as our study showed, they have higher species richness in the mountains of 219 

western North and South America compared to the flat-lying eastern regions and frequently 220 

undertake migrations in mountainous areas. Even if sunbirds were dispersal limited, 221 

hummingbirds are still more speciose than sunbirds even when taking latitudinal range into 222 

account. Of the 364 species, only 15 hummingbirds are found at latitudes where sunbirds are 223 

absent. Even if we assume that expansion into the northern latitudes led to the evolution of these 224 

15 species, it still only accounts for approximately 4% of hummingbird species. The difference 225 
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in species richness between the families cannot solely be due to dispersal limitation. Instead, we 226 

feel that the combined evidence of species richness and biogeography is highly suggestive of one 227 

or more key adaptations in hummingbirds. 228 

 Our spatial analyses cannot tell us what the key adaptations are, but we can speculate on 229 

what they may be. Though hummingbirds and highly specialized sunbirds show many 230 

similarities, they do differ in specific areas. Likely, the key adaptation deals with the differences 231 

in their foraging, specifically how they feed and how they fly. With feeding, one possibility for 232 

hummingbirds’ key adaptation may be their unique tongues. The tongues of hummingbirds have 233 

recently been shown to act as micropumps, a way of quickly and efficiently gathering nectar 234 

from flowers, in contrast to the previously assumed capillary action (13; 14). This unusual 235 

feeding method may allow hummingbirds to more efficiently gather nectar compared to sunbirds. 236 

Not enough is known about sunbird tongues, however, to see how the two taxa compare in nectar 237 

gathering abilities. Studies indicate that hummingbirds and sunbirds gather nectar at seemingly 238 

comparable rates suggesting that the amount gathered is not the key difference (31; 32; 33; 14 239 

[personal calculation]). If the tongue is the key adaptation, it will be for the fact that 240 

micropumping requires no energy expenditure on the part of hummingbirds, which removes a 241 

cost, while sunbirds apparently intake nectar through suction, a potentially energetically 242 

expensive system (34; 35). More research needs to be done on the tongues of sunbirds to see how 243 

they compare with the tongues of hummingbirds. 244 

Another possibility of the key adaptation that separates hummingbirds and sunbirds is 245 

hummingbirds’ ability to hover and fly in all directions (10). Adaptations for hovering include 246 

shortened arm bones, longer hand bones, a relatively fixed V-shaped arm position, a shallow 247 

ball-and-cup joint between the coracoid and sternum, a large sternum with a deep keel onto 248 
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which large breast muscles – pectoralis and supracoracoideus – attach, and red blood cells and 249 

hemoglobin adapted for higher-oxygen affinity and carrying capability (36; 37; 39; 38). All these 250 

anatomical features are adaptations to stiff-winged flight and are seen to a lesser extreme within 251 

other bird families of the order Apodiformes (36; 37; 38). What truly differentiates the flight of 252 

hummingbirds is the axial rotation of the humerus and wrist bones during flight (38). 253 

Hummingbirds can create lift on the upstroke – in addition to the downstroke seen in all birds – 254 

due to wing inversion caused by axial rotation of the wrist (39). Wrist flexibility comes from 255 

changes in carpal structure and the deletion of key ligaments and is seen in birds outside of 256 

Apodiformes (40; 38; 41). Additional power for each downstroke and upstroke also comes from 257 

the axial rotation of humerus, driven by the pectoralis, supracoracoideus, and other muscles (42; 258 

39; 38). The humerus can rotate up to 180º due to a unique humeroscapular joint (43; 36). In 259 

hummingbirds, the humeral head (condyle) is placed along the axis of the shaft instead of the 260 

terminal position, a feature unique to them (44; 45). Together, this suite of adaptations allows 261 

hummingbirds to hover effectively when foraging (46). 262 

Other evolutionary technologies may also benefit hummingbirds in secondary ways. For 263 

example, hummingbirds sustain flight more efficiently at higher altitudes, likely due to their 264 

denser erythrocyte count, expanding their fundamental niche to higher elevations (47). We feel 265 

though that hovering remains the likeliest candidate for a hummingbird key adaptation. Many of 266 

the musculoskeletal changes are seen only in Apodiformes with the shifting of the condyle seen 267 

only in Trochilidae. Such efficient hovering is likely an evolutionarily implastic and ancestral 268 

trait that arose only once among Aves. Through this adaptation, hummingbirds have 269 

fundamentally changed the rules of their nectarivory; they exist as a new type of bauplan while 270 

sunbirds are still effectively a derived passerine (6; 48). 271 
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We speculate three possible reasons for the evolution of hovering. Firstly, hummingbirds 272 

can exploit the nectar of plants without perches, potentially opening a new resource for them. As 273 

other nectarivorous birds need to perch while feeding, flowers without perches may represent a 274 

relatively abundant and constant resource without competition from other bird species. Evolution 275 

of hovering in this scenario may be a virtuous cycle as hovering is more efficient at high nectar 276 

volumes which occur in the absence of competition (49). Secondly, hummingbirds may be better 277 

able to escape predation due to their unique flying abilities. With the ability to fly in all 278 

directions, hummingbirds may more easily avoid predators, a useful ability especially when 279 

feeding at a flower with blocked sightlines (50). Furthermore, the musculoskeletal changes in the 280 

hummingbirds are shown to make them extraordinarily agile (51). Finally, while hovering is 281 

energetically costly, it is also time efficient (52). Hovering birds spend less time gathering 282 

resources at flowers than birds which rely on perches. This means that hovering becomes more 283 

energetically efficient compared to perching when birds feed within clustered flower patches (53; 284 

54).  285 

 There could be many reasons why hummingbirds developed their key adaptation. 286 

Hummingbirds underwent an expansive radiation during the uplift of the Andes beginning 287 

around 10 mya (55). Living in such rapidly changing conditions could have necessitated the 288 

evolution of a more efficient foraging system. As mentioned earlier, greater oxygen capacity is 289 

beneficial to both hovering and living in low oxygen conditions. There is also the possibility that 290 

the rise of the Andes freed up niche space that would have otherwise been taken up by a 291 

competing family like hawkmoths (Sphingidae), a sort of ecological and evolutionary constraint 292 

(5). These factors, along with hummingbirds’ evolutionary history, may combine to lead to the 293 

evolution of hovering (46). Furthermore, sunbirds may face their own internal constraints, 294 
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genetic or otherwise, preventing them from evolving a key adaptation (56). Whatever the case 295 

may be, our results suggest the evolution of hovering (or some other adaptation) allowed 296 

hummingbirds to more efficiently take advantage of a resource and expand their fundamental 297 

niche. 298 

 The real test of evolutionary technologies would come from seeing what happens when 299 

the two clades meet. Deliberately shifting species across the globe would obviously be unethical 300 

but previous or accidental species invasions may offer such a test. For example, European 301 

Lumbricid earthworms have colonized parts of North America that are farther north than their 302 

American counterparts (57). Both sets of earthworms are ecological equivalents and have 303 

convergent features to fill the role of soil turners. The invasive European earthworms, though, 304 

are known to tolerate environmental stress through protective cocoons during times of drought 305 

and high glucose and glycogen content in cells to prevent freezing during winter (58; 59). These 306 

adaptations may have allowed European earthworms to colonize the colder climes of Canada and 307 

expand their range beyond the North American species.  308 

Through biogeographic analysis, we show that hummingbirds inhabit more hostile climes 309 

than sunbirds, likely due to the possession of a superior evolutionary technology. Going forward, 310 

biogeographic comparison between clades may reveal itself to be a powerful tool to reveal 311 

differences in evolutionary technologies and illuminate the interaction between adaptation and 312 

environment.  313 
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Fig. 1 How differences in adaptations between two convergent taxa (purple and green) may lead 460 

may alter the set of environmental variables (its fundamental niche) under which a taxon has 461 

positive fitness (colored region). (a) Adaptations are largely equivalent, and the taxa survive 462 

under similar conditions. (b) Adaptations are divergent, and there is little overlap in 463 

environmental conditions in which both taxa survive. (c) The superior adaptations of the purple 464 

clade mean it can survive under a greater set of environmental variables (i.e., it has a larger 465 

fundamental niche) compared to the green clade. 466 

Fig. 2 A map of species density of hummingbirds (purple) and sunbirds (green). Richer colors 467 

represent greater species density. Scales are chosen to reflect the difference in overall species 468 

richness of each taxon. Hummingbirds not only have higher species density but also extend 469 

farther. 470 

Fig. 3 Changes in species density with elevation for hummingbirds (purple) and sunbirds 471 

(green). Though both clades extend to similar altitudes, hummingbirds maintain species richness 472 

at higher elevations as denoted by the richer colors. 473 

Fig. 4 A plot of the normalized species richness �� of hummingbirds and sunbirds, along with 474 

the fitted line, for elevation (a, c) and “polewardness” (b, d). Triangles and purple lines denote 475 

hummingbirds, and circles and green lines denote sunbirds. Hummingbirds maintain species 476 

richness at higher elevations and mid-latitudinal ranges and extend farther latitudinally than 477 

sunbirds. Inflection (cross) and MMC points (asterisks) also are shown (c, d). Inflection points 478 

come later in hummingbirds than sunbirds. With regard to elevation, hummingbird �� and 479 

sunbird �� start their decline at a similar spot but hummingbird �� declines more slowly. With 480 

latitude, sunbird �� declines earlier than hummingbird ��.  481 
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